When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    Each of the probabilities on the right-hand side converge to zero as n → ∞ by definition of the convergence of {X n} and {Y n} in probability to X and Y respectively. Taking the limit we conclude that the left-hand side also converges to zero, and therefore the sequence {(X n, Y n)} converges in probability to {(X, Y)}.

  3. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  4. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Because () is bounded, this sequence has a lower bound and an upper bound . We take I 1 = [ s , S ] {\displaystyle I_{1}=[s,S]} as the first interval for the sequence of nested intervals. Then we split I 1 {\displaystyle I_{1}} at the mid into two equally sized subintervals.

  5. Cauchy sequence - Wikipedia

    en.wikipedia.org/wiki/Cauchy_sequence

    These last two properties, together with the Bolzano–Weierstrass theorem, yield one standard proof of the completeness of the real numbers, closely related to both the Bolzano–Weierstrass theorem and the Heine–Borel theorem. Every Cauchy sequence of real numbers is bounded, hence by Bolzano–Weierstrass has a convergent subsequence ...

  6. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    It is possible to prove the least-upper-bound property using the assumption that every Cauchy sequence of real numbers converges. Let S be a nonempty set of real numbers. If S has exactly one element, then its only element is a least upper bound. So consider S with more than one element, and suppose that S has an upper bound B 1.

  7. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    Likewise, if, for some real m, a n ≥ m for all n greater than some N, then the sequence is bounded from below and any such m is called a lower bound. If a sequence is both bounded from above and bounded from below, then the sequence is said to be bounded.

  8. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are ...

  9. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    Comparing to the section above, one achieves a sequence of nested intervals for the -th root of , namely , by looking at whether the midpoint of the -th interval is lower or equal or greater than . Existence of infimum and supremum in bounded Sets