When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    In number theory, the prime omega functions and () count the number of prime factors of a natural number . Thereby (little omega) counts each distinct prime factor, whereas the related function () (big omega) counts the total number of prime factors of , honoring their multiplicity (see arithmetic function).

  3. Divisor function - Wikipedia

    en.wikipedia.org/wiki/Divisor_function

    because by definition, the factors of a prime number are 1 and itself. ... The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    where both factors have integer coefficients (the fact that Q has integer coefficients results from the above formula for the quotient of P(x) by /). Comparing the coefficients of degree n and the constant coefficients in the above equality shows that, if p q {\displaystyle {\tfrac {p}{q}}} is a rational root in reduced form , then q is a ...

  5. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The prime number race generalizes to other moduli and is the subject of much research; Pál Turán asked whether it is always the case that π c,a (x) and π c,b (x) change places when a and b are coprime to c. [34] Granville and Martin give a thorough exposition and survey. [33] Graph of the number of primes ending in 1, 3, 7, and 9 up to n ...

  6. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements.. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).

  8. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4).