When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  3. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gaussian_gravitational...

    μ = G(M + m), a gravitational parameter, [note 2] where G is Newton's gravitational constant, M is the mass of the primary body (i.e., the Sun), m is the mass of the secondary body (i.e., a planet), and; p is the semi-parameter (the semi-latus rectum) of the body's orbit. Note that every variable in the above equations is a constant for two ...

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The quantity GM —the product of the gravitational constant and the mass of a given astronomical body such as the Sun or Earth—is known as the standard gravitational parameter (also denoted μ). The standard gravitational parameter GM appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of ...

  5. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    Every object in a 2-body ballistic trajectory has a constant specific orbital energy equal to the sum of its specific kinetic and specific potential energy: = = =, where = is the standard gravitational parameter of the massive body with mass , and is the radial distance from its center. As an object in an escape trajectory moves outward, its ...

  6. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.

  7. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    The mean anomaly changes linearly with time, scaled by the mean motion, [2] =. where μ is the standard gravitational parameter. Hence if at any instant t 0 the orbital parameters are (e 0, a 0, i 0, Ω 0, ω 0, M 0), then the elements at time t = t 0 + δt is given by (e 0, a 0, i 0, Ω 0, ω 0, M 0 + n δt).

  8. Solar mass - Wikipedia

    en.wikipedia.org/wiki/Solar_mass

    The value of G times the mass of an object, called the standard gravitational parameter, is known for the Sun and several planets to a much higher accuracy than G alone. [13] As a result, the solar mass is used as the standard mass in the astronomical system of units.

  9. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The quantity is often termed the standard gravitational parameter, which has a different value for every planet or moon in the Solar System. Once the circular orbital velocity is known, the escape velocity is easily found by multiplying by 2 {\displaystyle {\sqrt {2}}} :