Search results
Results From The WOW.Com Content Network
Reaction of arene with isocyanate catalysed by aluminium trichloride, formation of aromatic amide. Ritter reaction [28] Alkenes, alcohols, or other carbonium ion sources Secondary amides via an addition reaction between a nitrile and a carbonium ion in the presence of concentrated acids. Photolytic addition of formamide to olefins [29] Terminal ...
Peptide bond formation via dehydration reaction. When two amino acids form a dipeptide through a peptide bond, [1] it is a type of condensation reaction. [2] In this kind of condensation, two amino acids approach each other, with the non-side chain (C1) carboxylic acid moiety of one coming near the non-side chain (N2) amino moiety of the other.
In enzymology, an amidase (EC 3.5.1.4, acylamidase, acylase (misleading), amidohydrolase (ambiguous), deaminase (ambiguous), fatty acylamidase, N-acetylaminohydrolase (ambiguous)) is an enzyme that catalyzes the hydrolysis of an amide. In this way, the two substrates of this enzyme are an amide and H 2 O, whereas its two products are ...
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
The Ritter reaction (sometimes called the Ritter amidation) is a chemical reaction that transforms a nitrile into an N-alkyl amide using various electrophilic alkylating reagents. The original reaction formed the alkylating agent using an alkene in the presence of a strong acid .
In chemistry, acylation is a broad class of chemical reactions in which an acyl group (R−C=O) is added to a substrate. The compound providing the acyl group is called the acylating agent. The substrate to be acylated and the product include the following: alcohols, esters; amines, amides; arenes or alkenes, [1] ketones
Omega amidase catalyzes the deamidation of several different alpha-keto acids into ammonia and metabolically useful carboxylic acids [5] The general mechanism is the same as for other nitrilases: binding of the substrate to the active site, followed by release of ammonia, formation of a thioester intermediate at the cysteine, binding of water and then release of the carboxylic acid product. [3]
These reactions proceed via the intermediacy of amides. The intramolecular reaction of a carboxylic acid with an amide is far faster than the intermolecular reaction, which is rarely observed. They may also be produced via the oxidation of amides, particularly when starting from lactams. [6] R(CO)NHCH 2 R' + 2 [O] → R(CO)N(CO)R' + H 2 O