Ad
related to: quotient of functions definition geometry quizlet mathstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero). A more detailed definition goes as follows: [10] A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is
A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ...
In the category of sets, the coequalizer of two functions f, g : X → Y is the quotient of Y by the smallest equivalence relation ~ such that for every x ∈ X, we have f(x) ~ g(x). [1] In particular, if R is an equivalence relation on a set Y, and r 1, r 2 are the natural projections (R ⊂ Y × Y) → Y then the coequalizer of r 1 and r 2 is ...
The ideal quotient corresponds to set difference in algebraic geometry. [1] More precisely, If W is an affine variety (not necessarily irreducible) and V is a subset of the affine space (not necessarily a variety), then
Denote the subspace of all functions f ∈ C[0,1] with f(0) = 0 by M. Then the equivalence class of some function g is determined by its value at 0, and the quotient space C[0,1]/M is isomorphic to R. If X is a Hilbert space, then the quotient space X/M is isomorphic to the orthogonal complement of M.
In algebraic geometry, a geometric quotient of an algebraic variety X with the action of an algebraic group G is a morphism of varieties: such that [1] (i) The map π {\displaystyle \pi } is surjective, and its fibers are exactly the G-orbits in X.
More formally, a quotient graph is a quotient object in the category of graphs. The category of graphs is concretizable – mapping a graph to its set of vertices makes it a concrete category – so its objects can be regarded as "sets with additional structure", and a quotient graph corresponds to the graph induced on the quotient set V / R of ...