When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers.A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers.

  3. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    If ⁠ ⁠ really is prime, it will always answer yes, but if ⁠ ⁠ is composite then it answers yes with probability at most 1/2 and no with probability at least 1/2. [132] If this test is repeated ⁠ n {\displaystyle n} ⁠ times on the same number, the probability that a composite number could pass the test every time is at most ⁠ 1 / 2 ...

  4. Chebyshev's bias - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_bias

    Plot of the function (;,) (;,) for n ≤ 30000. In number theory, Chebyshev's bias is the phenomenon that most of the time, there are more primes of the form 4k + 3 than of the form 4k + 1, up to the same limit.

  5. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The theorem extends Euclid's theorem that there are infinitely many prime numbers (of the form 1 + 2n). Stronger forms of Dirichlet's theorem state that for any such arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges and that different such arithmetic progressions with the same modulus have ...

  6. Pafnuty Chebyshev - Wikipedia

    en.wikipedia.org/wiki/Pafnuty_Chebyshev

    Pafnuty Lvovich Chebyshev (Russian: Пафну́тий Льво́вич Чебышёв, IPA: [pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof]) (16 May [O.S. 4 May] 1821 – 8 December [O.S. 26 November] 1894) [3] was a Russian mathematician and considered to be the founding father of Russian mathematics.

  7. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.

  8. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    Bertrand's (weaker) postulate follows from this by taking k = n, and considering the k numbers n + 1, n + 2, up to and including n + k = 2n, where n > 1. According to Sylvester's generalization, one of these numbers has a prime factor greater than k .

  9. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Hence, n! + 1 is not divisible by any of the integers from 2 to n, inclusive (it gives a remainder of 1 when divided by each). Hence n! + 1 is either prime or divisible by a prime larger than n. In either case, for every positive integer n, there is at least one prime bigger than n. The conclusion is that the number of primes is infinite. [8]