When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive notion - Wikipedia

    en.wikipedia.org/wiki/Primitive_notion

    The notions themselves may not necessarily need to be stated; Susan Haack (1978) writes, "A set of axioms is sometimes said to give an implicit definition of its primitive terms." [7] Euclidean geometry: Under Hilbert's axiom system the primitive notions are point, line, plane, congruence, betweenness , and incidence.

  3. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    The only primitive relations are "betweenness" and "congruence" among points. Tarski's axiomatization is shorter than its rivals, in a sense Tarski and Givant (1999) make explicit. It is more concise than Pieri's because Pieri had only two primitive notions while Tarski introduced three: point, betweenness, and congruence.

  4. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    But the debate is interesting enough that it is considered notable when a theorem in ZFC (ZF plus AC) is logically equivalent (with just the ZF axioms) to the axiom of choice, and mathematicians look for results that require the axiom of choice to be false, though this type of deduction is less common than the type that requires the axiom of ...

  5. Tarski's undefinability theorem - Wikipedia

    en.wikipedia.org/wiki/Tarski's_undefinability...

    The metalanguage includes primitive notions, axioms, and rules absent from the object language, so that there are theorems provable in the metalanguage not provable in the object language. The undefinability theorem is conventionally attributed to Alfred Tarski. Gödel also discovered the undefinability theorem in 1930, while proving his ...

  6. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems.A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems.

  7. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The axioms in order below are expressed in a mixture of first order logic and high-level abbreviations. Axioms 1–8 form ZF, while the axiom 9 turns ZF into ZFC. Following Kunen (1980), we use the equivalent well-ordering theorem in place of the axiom of choice for axiom 9. All formulations of ZFC imply that at least one set exists.

  8. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    The primitive notions of his theory were function and argument. Using these notions, he defined class and set. [1] Paul Bernays reformulated von Neumann's theory by taking class and set as primitive notions. [2] Kurt Gödel simplified Bernays' theory for his relative consistency proof of the axiom of choice and the generalized continuum ...

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    This was an essential ingredient in Hilbert's proof of the consistency of his axiom system. By the 7th edition of the Grundlagen, this axiom had been replaced by the axiom of line completeness given above and the old axiom V.2 became Theorem 32. Also to be found in the 1899 monograph (and appearing in the Townsend translation) is: II.4.