Search results
Results From The WOW.Com Content Network
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.
The unsorted multiset is standard as of C++11; previously SGI's STL provides the hash_multiset class, which was copied and eventually standardized. For Java, third-party libraries provide multiset functionality: Apache Commons Collections provides the Bag and SortedBag interfaces, with implementing classes like HashBag and TreeBag.
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
Conversely, in every solution of S u, since the target sum is 7 T and each element is in ( T /4, 7 T /2), there must be exactly 3 elements per set, so it corresponds to a solution of S r. The ABC-partition problem (also called numerical 3-d matching ) is a variant in which, instead of a set S with 3 m integers, there are three sets A , B , C ...
[1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
A related example is the multiset of solutions of an algebraic equation. A quadratic equation, for example, has two solutions. However, in some cases they are both the same number. Thus the multiset of solutions of the equation could be {3, 5}, or it could be {4, 4}. In the latter case it has a solution of multiplicity 2.
A related problem, somewhat similar to the Birthday paradox, is that of determining the size of the input set so that we have a probability of one half that there is a solution, under the assumption that each element in the set is randomly selected with uniform distribution between 1 and some given value. The solution to this problem can be ...