When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Atomicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Atomicity_(chemistry)

    Monoatomic (composed of one atom). Examples include He , Ne , Ar , and Kr . All noble gases are monoatomic. Diatomic (composed of two atoms). Examples include H 2 , N 2 , O 2 , F 2 , and Cl 2 . Halogens are usually diatomic. Triatomic (composed of three atoms). Examples include O 3 .

  3. Neon - Wikipedia

    en.wikipedia.org/wiki/Neon

    This is an accepted version of this page This is the latest accepted revision, reviewed on 5 March 2025. Chemical element with atomic number 10 (Ne) This article is about the chemical element. For other uses, see Neon (disambiguation). Chemical element with atomic number 10 (Ne) Neon, 10 Ne Neon Appearance colorless gas exhibiting an orange-red glow when placed in an electric field Standard ...

  4. Monatomic gas - Wikipedia

    en.wikipedia.org/wiki/Monatomic_gas

    One mole of atoms contains an Avogadro number of atoms, so that the energy of one mole of atoms of a monatomic gas is =, where R is the gas constant. In an adiabatic process , monatomic gases have an idealised γ -factor ( C p / C v ) of 5/3, as opposed to 7/5 for ideal diatomic gases where rotation (but not vibration at room temperature) also ...

  5. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It defines the number of constituent particles in one mole, where the particles in question can be either molecules, atoms, ions, ion pairs, or any other elementary entities.

  6. Molar ionization energies of the elements - Wikipedia

    en.wikipedia.org/wiki/Molar_ionization_energies...

    These tables list values of molar ionization energies, measured in kJ⋅mol −1.This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions.

  7. Sackur–Tetrode equation - Wikipedia

    en.wikipedia.org/wiki/Sackur–Tetrode_equation

    The Sackur–Tetrode constant, written S 0 /R, is equal to S/k B N evaluated at a temperature of T = 1 kelvin, at standard pressure (100 kPa or 101.325 kPa, to be specified), for one mole of an ideal gas composed of particles of mass equal to the atomic mass constant (m u = 1.660 539 068 92 (52) × 10 −27 kg ‍ [5]).

  8. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.

  9. Noble gas compound - Wikipedia

    en.wikipedia.org/wiki/Noble_gas_compound

    Under these conditions, only about one out of every 650,000 C 60 cages was doped with a helium atom; with higher pressures (3000 bar), it is possible to achieve a yield of up to 0.1%. Endohedral complexes with argon , krypton and xenon have also been obtained, as well as numerous adducts of He@C 60 .