Search results
Results From The WOW.Com Content Network
In C++ pointers to non-static members of a class can be defined. If a class C has a member T a then &C::a is a pointer to the member a of type T C::*. This member can be an object or a function. [16] They can be used on the right-hand side of operators .* and ->* to access the corresponding member.
The C++ standard library is designed to be minimalistic, providing only a standardised set of general use features, while the Java Class Library and Java Platform Module System (the Java standard library) is much more extensive, providing a much larger comprehensive standardised set of features, such as graphics, UI creation, and more.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
The Boost C++ library provides strong and weak references. It is a mistake to use regular C++ pointers as the weak counterparts of smart pointers because such usage removes the ability to detect when the strong reference count has gone to 0 and the object has been deleted. Worse yet, it does not allow for detection of whether another strong ...
Pointers can also escape if they are stored in global variables or other data structures that, in turn, escape the current procedure. Escape analysis determines all the places where a pointer can be stored and whether the lifetime of the pointer can be proven to be restricted only to the current procedure and/or thread.
In computer science, pointer analysis, or points-to analysis, is a static code analysis technique that establishes which pointers, or heap references, can point to which variables, or storage locations. It is often a component of more complex analyses such as escape analysis. A closely related technique is shape analysis.
C++ compilers typically implement dynamic dispatch with a data structure called a virtual function table (vtable) that defines the name-to-implementation mapping for a given class as a set of member function pointers. This is purely an implementation detail, as the C++ specification does not mention vtables.
Objects that are shared but not owned can be accessed via a reference, raw pointer, or iterator (a conceptual generalisation of pointers). However, by the same token, C++ provides native ways for users to opt-into such functionality: C++11 provides reference counted smart pointers, via the std::shared_ptr class, enabling automatic shared memory ...