When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation axis moves with respect to the fixed stars (inertial space); the components of this motion are precession and nutation. It also moves with respect to Earth's crust; this is called polar motion. Precession is a rotation of Earth's rotation axis, caused primarily by external torques from the gravity of the Sun, Moon and other bodies.

  3. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    [nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]

  4. Earth is spinning faster than usual, but why? What experts ...

    www.aol.com/news/earth-spinning-faster-usual-why...

    On both of these days, the Earth completed its usual 24-hour rotation in less than 24 hours, ... The shortened days are caused by the Earth spinning faster than usual, ...

  5. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The differences of Earth's gravity around the Antarctic continent. The surface of the Earth is rotating, so it is not an inertial frame of reference. At latitudes nearer the Equator, the outward centrifugal force produced by Earth's rotation is larger than at polar latitudes. This counteracts the Earth's gravity to a small degree – up to a ...

  6. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    The orbital speed of Earth averages about 29.78 km/s (107,200 km/h; 66,600 mph), which is fast enough to travel a distance equal to Earth's diameter, about 12,742 km (7,918 mi), in seven minutes, and the distance from Earth to the Moon, 384,400 km (238,900 mi), in about 3.5 hours.

  7. Coriolis frequency - Wikipedia

    en.wikipedia.org/wiki/Coriolis_frequency

    The rotation rate of the Earth (Ω = 7.2921 × 10 −5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). [2] In the midlatitudes, the typical value for is about 10 −4 rad/s.

  8. Foucault pendulum vector diagrams - Wikipedia

    en.wikipedia.org/wiki/Foucault_pendulum_vector...

    The time of an Earth's rotation is inversely related to the angular velocity and the surface velocity (T = 1 day for 2 pi radians, or at the equator, 1 circumferential unit per 1 EVU = 40,075 km ÷ 1670 km/h ÷ 24 h/day = 1 day). At a given latitude the surface velocity is equal to pi times the chord length parallel to the equator per 24 hours.

  9. ΔT (timekeeping) - Wikipedia

    en.wikipedia.org/wiki/ΔT_(timekeeping)

    Earth's rate of rotation must be integrated to obtain time, which is Earth's angular position (specifically, the orientation of the meridian of Greenwich relative to the fictitious mean sun). Integrating +1.7 ms/d/cy and centering the resulting parabola on the year 1820 yields (to a first approximation) 32 × ( ⁠ year − 1820 / 100 ⁠ ) 2