When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching polytope - Wikipedia

    en.wikipedia.org/wiki/Matching_polytope

    A facet of a polytope is the set of its points which satisfy an essential defining inequality of the polytope with equality. If the polytope is d-dimensional, then its facets are (d − 1)-dimensional. For any graph G, the facets of MP(G) are given by the following inequalities: [1]: 275–279 x ≥ 0 E

  3. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In the context of metric measure spaces, the definition of a Poincaré inequality is slightly different.One definition is: a metric measure space supports a (q,p)-Poincare inequality for some , < if there are constants C and λ ≥ 1 so that for each ball B in the space, ‖ ‖ ⁡ () ‖ ‖ ().

  4. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    Instead, the inequalities must be solved independently, yielding x < ⁠ 1 / 2 ⁠ and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < ⁠ 1 / 2 ⁠. Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities ...

  5. Hardy's inequality - Wikipedia

    en.wikipedia.org/wiki/Hardy's_inequality

    Hardy's inequality is an inequality in mathematics, named after G. H. Hardy.. Its discrete version states that if ,,, … is a sequence of non-negative real numbers, then for every real number p > 1 one has

  6. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  7. Slack variable - Wikipedia

    en.wikipedia.org/wiki/Slack_variable

    Slack variables give an embedding of a polytope into the standard f-orthant, where is the number of constraints (facets of the polytope). This map is one-to-one (slack variables are uniquely determined) but not onto (not all combinations can be realized), and is expressed in terms of the constraints (linear functionals, covectors).

  8. Karamata's inequality - Wikipedia

    en.wikipedia.org/wiki/Karamata's_inequality

    The finite form of Jensen's inequality is a special case of this result. Consider the real numbers x 1, …, x n ∈ I and let := + + + denote their arithmetic mean.Then (x 1, …, x n) majorizes the n-tuple (a, a, …, a), since the arithmetic mean of the i largest numbers of (x 1, …, x n) is at least as large as the arithmetic mean a of all the n numbers, for every i ∈ {1, …, n − 1}.

  9. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    The system of equations and inequalities corresponding to the KKT conditions is usually not solved directly, except in the few special cases where a closed-form solution can be derived analytically. In general, many optimization algorithms can be interpreted as methods for numerically solving the KKT system of equations and inequalities.