Search results
Results From The WOW.Com Content Network
In machine learning, pattern recognition is the assignment of a label to a given input value. In statistics, discriminant analysis was introduced for this same purpose in 1936. An example of pattern recognition is classification , which attempts to assign each input value to one of a given set of classes (for example, determine whether a given ...
In pattern recognition and machine learning, a feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis. When representing images, the feature values ...
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not.
A very common type of prior knowledge in pattern recognition is the invariance of the class (or the output of the classifier) to a transformation of the input pattern. This type of knowledge is referred to as transformation-invariance. The mostly used transformations used in image recognition are: translation; rotation; skewing;
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.