When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.

  3. Limits of computation - Wikipedia

    en.wikipedia.org/wiki/Limits_of_computation

    The Bekenstein bound limits the amount of information that can be stored within a spherical volume to the entropy of a black hole with the same surface area. Thermodynamics limit the data storage of a system based on its energy, number of particles and particle modes. In practice, it is a stronger bound than the Bekenstein bound. [1]

  4. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  5. Computation in the limit - Wikipedia

    en.wikipedia.org/wiki/Computation_in_the_limit

    The limit lemma states that a set of natural numbers is limit computable if and only if the set is computable from ′ (the Turing jump of the empty set). The relativized limit lemma states that a set is limit computable in if and only if it is computable from ′. Moreover, the limit lemma (and its relativization) hold uniformly.

  6. Division by zero - Wikipedia

    en.wikipedia.org/wiki/Division_by_zero

    the separate limits of the numerator and denominator are , so we have the indeterminate form , but simplifying the quotient first shows that the limit exists: lim x → 1 x 2 − 1 x − 1 = lim x → 1 ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 ( x + 1 ) = 2. {\displaystyle \lim _{x\to 1}{\frac {x^{2}-1}{x-1}}=\lim _{x\to 1}{\frac {(x-1)(x+1 ...

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    As an illustration of this, the parity cycle (1 1 0 0 1 1 0 0) and its sub-cycle (1 1 0 0) are associated to the same fraction ⁠ 5 / 7 ⁠ when reduced to lowest terms. In this context, assuming the validity of the Collatz conjecture implies that (1 0) and (0 1) are the only parity cycles generated by positive whole numbers (1 and 2 ...

  8. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  9. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...