Search results
Results From The WOW.Com Content Network
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
For functions of three or more variables, the determinant of the Hessian does not provide enough information to classify the critical point, because the number of jointly sufficient second-order conditions is equal to the number of variables, and the sign condition on the determinant of the Hessian is only one of the conditions.
Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of ...
Intuitively, therefore, the local behavior of the function at (0, 0) cannot be described as a quadratic form, and the Hessian matrix thus fails to be symmetric. In general, the interchange of limiting operations need not commute. Given two variables near (0, 0) and two limiting processes on
Holomorphic functions of several complex variables satisfy an identity theorem, as in one variable : two holomorphic functions defined on the same connected open set and which coincide on an open subset N of D, are equal on the whole open set D. This result can be proven from the fact that holomorphics functions have power series extensions ...
But the definition was soon extended to functions of several variables and to functions of a complex variable. In the second half of the 19th century, the mathematically rigorous definition of a function was introduced, and functions with arbitrary domains and codomains were defined. Functions are now used throughout all areas of mathematics.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.