When.com Web Search

  1. Ads

    related to: derivative fractional order systems practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. Fractional-order system - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_system

    Such systems are said to have fractional dynamics. Derivatives and integrals of fractional orders are used to describe objects that can be characterized by power-law nonlocality, [2] power-law long-range dependence or fractal properties. Fractional-order systems are useful in studying the anomalous behavior of dynamical systems in physics ...

  3. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The corresponding derivative is calculated using Lagrange's rule for differential operators. To find the α th order derivative, the n th order derivative of the integral of order (n − α) is computed, where n is the smallest integer greater than α (that is, n = ⌈α⌉). The Riemann–Liouville fractional derivative and integral has ...

  4. Fractional-order integrator - Wikipedia

    en.wikipedia.org/wiki/Fractional-order_integrator

    To compute an integer order derivative, the weights in the summation would be zero, with the exception of the most recent data points, where (in the case of the first unit derivative) the weight of the data point at t − 1 is −1 and the weight of the data point at t is 1. The sum of the points in the input function using these weights ...

  5. Differintegral - Wikipedia

    en.wikipedia.org/wiki/Differintegral

    is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.

  6. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted into a larger system of first-order equations by introducing extra variables.

  7. Caputo fractional derivative - Wikipedia

    en.wikipedia.org/wiki/Caputo_fractional_derivative

    In mathematics, the Caputo fractional derivative, also called Caputo-type fractional derivative, is a generalization of derivatives for non-integer orders named after Michele Caputo. Caputo first defined this form of fractional derivative in 1967.

  1. Ad

    related to: derivative fractional order systems practice problems