Search results
Results From The WOW.Com Content Network
Transcription is carried out by RNA polymerase but its specificity is controlled by sequence-specific DNA binding proteins called transcription factors. Transcription factors work to recognize specific DNA sequences and based on the cells needs, promote or inhibit additional transcription. [6] Similar to other taxa, bacteria experience bursts ...
When transcription is arrested by the presence of a lesion in the transcribed strand of a gene, DNA repair proteins are recruited to the stalled RNA polymerase to initiate a process called transcription-coupled repair. [47] Central to this process is the general transcription factor TFIIH that has ATPase activity.
Bacteria do not have a membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid. [68] The nucleoid contains the chromosome with its associated proteins and RNA.
The DNA sequence that a transcription factor binds to is called a transcription factor-binding site or response element. [62] Transcription factors interact with their binding sites using a combination of electrostatic (of which hydrogen bonds are a special case) and Van der Waals forces. Due to the nature of these chemical interactions, most ...
Several cell function specific transcription factors (there are about 1,600 transcription factors in a human cell [14]) generally bind to specific motifs on an enhancer [15] and a small combination of these enhancer-bound transcription factors, when brought close to a promoter by a DNA loop, govern level of transcription of the target gene.
Gas vacuoles are membrane-bound, spindle-shaped vesicles, found in some planktonic bacteria and Cyanobacteria, that provides buoyancy to these cells by decreasing their overall cell density. Positive buoyancy is needed to keep the cells in the upper reaches of the water column, so that they can continue to perform photosynthesis .
Once a quorum level of autoinducer is achieved, its interaction with a sensor kinase at the cell membrane initiates a series of phosphorylation events that culminate in the phosphorylation of a regulator protein intracellularly. [4] This regulator protein subsequently functions as a transcription factor and alters gene expression.
In bacteria, translation initiation occurs as soon as the 5' end of an mRNA is synthesized, and translation and transcription are coupled. This is not possible in eukaryotes because transcription and translation are carried out in separate compartments of the cell (the nucleus and cytoplasm).