Ads
related to: obtuse triangles examples geometry problems
Search results
Results From The WOW.Com Content Network
An obtuse triangle (or obtuse-angled triangle) is a triangle with one obtuse angle (greater than 90°) and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry , no Euclidean triangle can have more than one obtuse angle.
If a 2 + b 2 < c 2, then the triangle is obtuse. Edsger W. Dijkstra has stated this proposition about acute, right, and obtuse triangles in this language: sgn(α + β − γ) = sgn(a 2 + b 2 − c 2), where α is the angle opposite to side a, β is the angle opposite to side b, γ is the angle opposite to side c, and sgn is the sign function. [30]
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13
Obtuse case. Figure 7b cuts a hexagon in two different ways into smaller pieces, yielding a proof of the law of cosines in the case that the angle γ is obtuse. We have in pink, the areas a 2, b 2, and −2ab cos γ on the left and c 2 on the right; in blue, the triangle ABC twice, on the left, as well as on the right.
For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an obtuse angle), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side, exterior ...
This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal's triangle or triangular matrices, or concretely in physical space.