Search results
Results From The WOW.Com Content Network
The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b.
p2mm: TRHVG (translation, 180° rotation, horizontal line reflection, vertical line reflection, and glide reflection) Formally, a frieze group is a class of infinite discrete symmetry groups of patterns on a strip (infinitely wide rectangle), hence a class of groups of isometries of the plane, or of a strip.
There is one more group in this family, called D nd (or D nv), which has vertical mirror planes containing the main rotation axis, but instead of having a horizontal mirror plane, it has an isometry that combines a reflection in the horizontal plane and a rotation by an angle 180°/n.
The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry.
The term horizontal (h) is used with respect to a vertical axis of rotation. In 2D, the symmetry group D n includes reflections in lines. When the 2D plane is embedded horizontally in a 3D space, such a reflection can either be viewed as the restriction to that plane of a reflection through a vertical plane, or as the restriction to the plane ...
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.