When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mitochondrion - Wikipedia

    en.wikipedia.org/wiki/Mitochondrion

    A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]

  3. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.

  4. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    The bacterial cell wall is omitted, gram-positive bacterial cells do not have outer membrane. [6] The complete breakdown of glucose releasing its energy is called cellular respiration. The last steps of this process occur in mitochondria. The reduced molecules NADH and FADH 2 are generated by the Krebs cycle, glycolysis, and pyruvate processing.

  5. Mitochondrial ROS - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_ROS

    Production of mitochondrial ROS, mitochondrial ROS. Mitochondrial ROS (mtROS or mROS) are reactive oxygen species (ROS) that are produced by mitochondria. [1] [2] [3] Generation of mitochondrial ROS mainly takes place at the electron transport chain located on the inner mitochondrial membrane during the process of oxidative phosphorylation.

  6. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The chemical energy stored in ATP (the bond of its third phosphate group to the rest of the molecule can be broken allowing more stable products to form, thereby releasing energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes.

  7. Membrane potential - Wikipedia

    en.wikipedia.org/wiki/Membrane_potential

    While cells expend energy to transport ions and establish a transmembrane potential, they use this potential in turn to transport other ions and metabolites such as sugar. The transmembrane potential of the mitochondria drives the production of ATP , which is the common currency of biological energy.

  8. Mitochondrial shuttle - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_shuttle

    The mitochondrial shuttles are biochemical transport systems used to transport reducing agents across the inner mitochondrial membrane. NADH as well as NAD+ cannot cross the membrane, but it can reduce another molecule like FAD and [QH 2] that can cross the membrane, so that its electrons can reach the electron transport chain.

  9. Mitochondrial membrane transport protein - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_membrane...

    Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the membranes of mitochondria. They serve to transport [2] molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane, separated by the inter-membrane space, or ...