When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    Graph of Boyle's original data [4] showing the hyperbolic curve of the relationship between pressure (P) and volume (V) of the form P = k/V. The relationship between pressure and volume was first noted by Richard Towneley and Henry Power in the 17th century. [5] [6] Robert Boyle confirmed their discovery through experiments and published the ...

  3. Pressure–volume diagram - Wikipedia

    en.wikipedia.org/wiki/Pressurevolume_diagram

    At point B, pressure becomes higher than the aortic pressure and the aortic valve opens, initiating ejection. BC is the ejection phase, volume decreases. At the end of this phase, pressure lowers again and falls below aortic pressure. The aortic valve closes. Point C is the end-systolic point. Segment CD is the isovolumic relaxation. During ...

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    The volume of gas increases proportionally to absolute temperature and decreases inversely proportionally to pressure, approximately according to the ideal gas law: = where: p is the pressure; V is the volume; n is the amount of substance of gas (moles) R is the gas constant, 8.314 J·K −1 mol −1

  6. Molar volume - Wikipedia

    en.wikipedia.org/wiki/Molar_volume

    The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.

  8. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Pressure–volume work (or PV or P-V work) occurs when the volume V of a system changes. PV work is often measured in units of litre-atmospheres where 1 L·atm = 101.325 J . However, the litre-atmosphere is not a recognized unit in the SI system of units, which measures P in pascals (Pa), V in m 3 , and PV in joules (J), where 1 J = 1 Pa·m 3 .

  9. Dalton's law - Wikipedia

    en.wikipedia.org/wiki/Dalton's_law

    An illustration of Dalton's law using the gases of air at sea level. Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases. [1]