Search results
Results From The WOW.Com Content Network
Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant. Therefore, when the volume is halved, the pressure is doubled; and if the volume is doubled, the pressure is halved.
q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure.
The pressure force pushing the liquid through the tube is the change in pressure multiplied by the area: F = −A Δp. This force is in the direction of the motion of the liquid. The negative sign comes from the conventional way we define Δp = p end − p top < 0.
p is the pressure; V is the volume; n is the amount of substance of gas (moles) R is the gas constant, 8.314 J·K −1 mol −1; T is the absolute temperature; To simplify, a volume of gas may be expressed as the volume it would have in standard conditions for temperature and pressure, which are 0 °C (32 °F) and 100 kPa. [2]
(Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.
The total pressure of a liquid, then, is ρgh plus the pressure of the atmosphere. When this distinction is important, the term total pressure is used. Otherwise, discussions of liquid pressure refer to pressure without regard to the normally ever-present atmospheric pressure. The pressure does not depend on the amount of liquid present. Volume ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Pressure–volume work (or PV or P-V work) occurs when the volume V of a system changes. PV work is often measured in units of litre-atmospheres where 1 L·atm = 101.325 J . However, the litre-atmosphere is not a recognized unit in the SI system of units, which measures P in pascals (Pa), V in m 3 , and PV in joules (J), where 1 J = 1 Pa·m 3 .