Search results
Results From The WOW.Com Content Network
An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]
The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
In an airfoil, the mean line curvature is designed to change the flow direction, the vane thickness is for strength and the streamlined shape is to delay the onset of boundary layer separation. Taking all the design factors of an airfoil , the resulting forces of lift and drag can be expressed in terms of lift and drag coefficient.
A design approach used by Burt Rutan is a high aspect ratio canard with higher lift coefficient (the wing loading of the canard is between 1.6 and 2 times the wing one) and a canard airfoil whose lift coefficient slope is non-linear (nearly flat) between 14° and 24°. [36] Another stabilisation parameter is the power effect.
Aspect ratio (aeronautics) – In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [23]
The ratio of the length of a nose cone compared to its base diameter is known as the fineness ratio. This is sometimes also called the aspect ratio, though that term is usually applied to wings and tails. Fineness ratio is often applied to the entire vehicle, considering the overall length and diameter.
The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.