Search results
Results From The WOW.Com Content Network
Data Analysis Expressions (DAX) is the native formula and query language for Microsoft PowerPivot, Power BI Desktop and SQL Server Analysis Services (SSAS) Tabular models. DAX includes some of the functions that are used in Excel formulas with additional functions that are designed to work with relational data and perform dynamic aggregation .
A transposition table is a cache of previously seen positions, and associated evaluations, in a game tree generated by a computer game playing program. If a position recurs via a different sequence of moves, the value of the position is retrieved from the table, avoiding re-searching the game tree below that position.
Transposition, producing the transpose of a matrix A T, which is computed by swapping columns for rows in the matrix A; Transpose of a linear map; Transposition (logic), a rule of replacement in philosophical logic; Transpose relation, another name for converse relation
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
OFFT - recursive block in-place transpose of square matrices, in Fortran; Jason Stratos Papadopoulos, blocked in-place transpose of square matrices, in C, sci.math.num-analysis newsgroup (April 7, 1998). See "Source code" links in the references section above, for additional code to perform in-place transposes of both square and non-square ...
The transpose A T is an invertible matrix. A is row-equivalent to the n-by-n identity matrix I n. A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly ...
Here is the conjugate transpose of V (or simply the transpose, if V contains real numbers only), and I denotes the identity matrix (of some dimension). Comment: The diagonal elements of D are called the singular values of A.
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.