Search results
Results From The WOW.Com Content Network
Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water. Buoyancy is a function of the force of gravity or other source of acceleration on objects of different densities, and for that reason is considered an apparent force, in the same way that centrifugal force is an apparent force as a function ...
Airy and Pratt isostasy are statements of buoyancy, but flexural isostasy is a statement of buoyancy when deflecting a sheet of finite elastic strength. In other words, the Airy and Pratt models are purely hydrostatic, taking no account of material strength, while flexural isostacy takes into account elastic forces from the deformation of the ...
(This formula is used for example in describing the measuring principle of a dasymeter and of hydrostatic weighing.) Example: If you drop wood into water, buoyancy will keep it afloat. Example: A helium balloon in a moving car. When increasing speed or driving in a curve, the air moves in the opposite direction to the car's acceleration.
Archimedes' interests in the conditions of stability for solid bodies are found both here and in his studies of the lever and centre of gravity in On the Equilibrium of Planes I-II. Book one of On Floating Bodies begins with a derivation of the Law of Buoyancy and ends with a proof that a floating segment of a homogeneous solid sphere is always ...
Pure jets and pure plumes define flows that are driven entirely by momentum and buoyancy effects, respectively. Flows between these two limits are usually described as forced plumes or buoyant jets. "Buoyancy is defined as being positive" when, in the absence of other forces or initial motion, the entering fluid would tend to rise.
Gravity currents occur at a variety of scales throughout nature. Examples include avalanches, haboobs, seafloor turbidity currents, [13] lahars, pyroclastic flows, and lava flows. There are also gravity currents with large density variations - the so-called low Mach number compressible flows. An example of such a gravity current is the heavy ...
All objects in a fluid experience two opposed forces in the vertical direction: gravity (determined by the mass of the object) and buoyancy (determined by the density of the fluid and the volume of liquid displaced by the object). If the buoyant force is greater than the force of gravity acting on an object, it will rise to the top of the liquid.
If it is much greater than unity, buoyancy is dominant (in the sense that there is insufficient kinetic energy to homogenize the fluids). If the Richardson number is of order unity, then the flow is likely to be buoyancy-driven: the energy of the flow derives from the potential energy in the system originally.