Search results
Results From The WOW.Com Content Network
The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states. These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a ...
In quantum mechanics, the Schrödinger equation describes how a system changes with time. It does this by relating changes in the state of the system to the energy in the system (given by an operator called the Hamiltonian). Therefore, once the Hamiltonian is known, the time dynamics are in principle known.
which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found.
The entire vector ξ is a solution of the Schrödinger equation (with a suitable Hamiltonian), which unfolds to a coupled system of 2s + 1 ordinary differential equations with solutions ξ(s, t), ξ(s − 1, t), ..., ξ(−s, t). The term "spin function" instead of "wave function" is used by some authors.
Three wavefunction solutions to the time-dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wavefunction. Right: The probability of finding the particle at a certain position.
2.1.2 Non-relativistic time-dependent Schrödinger equation. 2.2 Photoemission. ... with the corresponding Schrödinger equations and forms of wavefunction solutions.
Since the perturbed Hamiltonian is time-dependent, so are its energy levels and eigenstates. Thus, the goals of time-dependent perturbation theory are slightly different from time-independent perturbation theory. One is interested in the following quantities: The time-dependent expectation value of some observable A, for a given initial state.
The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.