Search results
Results From The WOW.Com Content Network
Secondary aquatic adaptations tend to develop in early speciation as the animal ventures into water in order to find available food. As successive generations spend more time in the water, natural selection causes the acquisition of more adaptations. Animals of later generations may spend most their life in the water, coming ashore for mating.
As aquatic tetrapods began their transition to land, several skeletal changes are thought to have occurred to allow for movement and respiration on land. Some adaptations required to adjust to non-aquatic life include the movement and use of alternating limbs, the use of pelvic appendages as sturdy propulsors, and the use of a solid surface at ...
Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are composed of cilia and flagella. Swimming has evolved a number of times in a range of organisms including arthropods, fish, molluscs, amphibians, reptiles, birds, and mammals.
Aquatic animals (especially freshwater animals) are often of special concern to conservationists because of the fragility of their environments. Aquatic animals are subject to pressure from overfishing / hunting , destructive fishing , water pollution , acidification , climate change and competition from invasive species .
Sea turtles are largely solitary animals, though some do form large, though often loosely connected groups during nesting season. Although only seven turtle species are truly marine, many more dwell in brackish waters. [1] [6] Sea snakes: the most abundant of the marine reptiles, there are over 60 different species of sea snakes.
The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. [1] Tetrapods (under the apomorphy-based definition used on this page) are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals.
Aquatic animals that swim by using an elongated fin along the dorsum, ventrum, or in pairs on their lateral margins (such as oarfish, knifefish, cephalopods) have all come to the same ratio of amplitude to wavelength of fin undulation to maximize speed, 20:1. [115]
The physiology of underwater diving is the physiological adaptations to diving of air-breathing vertebrates that have returned to the ocean from terrestrial lineages. They are a diverse group that include sea snakes, sea turtles, the marine iguana, saltwater crocodiles, penguins, pinnipeds, cetaceans, sea otters, manatees and dugongs.