When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  3. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Dirichlet function: is an indicator function that matches 1 to rational numbers and 0 to irrationals. It is nowhere continuous. Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function.

  4. Nevanlinna theory - Wikipedia

    en.wikipedia.org/wiki/Nevanlinna_theory

    If f is a rational function of degree d, then T(r,f) ~ d log r; in fact, T(r,f) = O(log r) if and only if f is a rational function. The order of a meromorphic function is defined by ρ ( f ) = lim sup r → ∞ log + ⁡ T ( r , f ) log ⁡ r . {\displaystyle \rho (f)=\limsup _{r\rightarrow \infty }{\dfrac {\log ^{+}T(r,f)}{\log r}}.}

  5. Polynomial and rational function modeling - Wikipedia

    en.wikipedia.org/wiki/Polynomial_and_rational...

    Rational functions can be either finite or infinite for finite values, or finite or infinite for infinite x values. Thus, rational functions can easily be incorporated into a rational function model. Rational function models can often be used to model complicated structure with a fairly low degree in both the numerator and denominator.

  6. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  7. Category:Rational functions - Wikipedia

    en.wikipedia.org/wiki/Category:Rational_functions

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  8. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Rational functions are quotients of two polynomial functions, and their domain is the real numbers with a finite number of them removed to avoid division by zero. The simplest rational function is the function , whose graph is a hyperbola, and whose domain is the whole real line except for 0.

  9. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.