When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [32] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...

  5. Block matrix - Wikipedia

    en.wikipedia.org/wiki/Block_matrix

    In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.

  6. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  7. Matrix chain multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_chain_multiplication

    For the example below, there are four sides: A, B, C and the final result ABC. A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  9. Wallace tree - Wikipedia

    en.wikipedia.org/wiki/Wallace_tree

    The final product is calculated by the weighted sum of all these partial products. The first step, as said above, is to multiply each bit of one number by each bit of the other, which is accomplished as a simple AND gate, resulting in n 2 {\displaystyle n^{2}} bits; the partial product of bits a m {\displaystyle a_{m}} by b n {\displaystyle b ...