Search results
Results From The WOW.Com Content Network
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
One can often quickly calculate this using the PV diagram as it is simply the area enclosed by the cycle. [citation needed] Note that in some cases specific volume will be plotted on the x-axis instead of volume, in which case the area under the curve represents work per unit mass of the working fluid (i.e. J/kg). [citation needed]
Further the same texts describe the area under these curves when plotted on a pressure—molar volume, see Fig. 1, as being the work done by the substance, positive going from left to right, and negative from right to left. Likewise the net work done in a cycle is the area enclosed by the closed curve.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
Archimedes showed that the surface area of a sphere is exactly four times the area of a flat disk of the same radius, and the volume enclosed by the sphere is exactly 2/3 of the volume of a cylinder of the same height and radius. Most basic formulas for surface area can be obtained by cutting surfaces and flattening them out (see: developable ...
For example, consider the formulas for the area enclosed by a circle in two dimensions (=) and the volume enclosed by a sphere in three dimensions (=). One might guess that the volume enclosed by the sphere in four-dimensional space is a rational multiple of π r 4 {\displaystyle \pi r^{4}} , but the correct volume is π 2 2 r 4 {\displaystyle ...