When.com Web Search

  1. Ad

    related to: square root by hand method

Search results

  1. Results From The WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The most common iterative method of square root calculation by hand is known as the "Babylonian method" or "Heron's method" after the first-century Greek philosopher Heron of Alexandria, who first described it. [24]

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    So the estimated square root of 15 is 3.875. The actual square root of 15 is 3.872983... One thing to note is that, no matter what the original guess was, the estimated answer will always be larger than the actual answer due to the inequality of arithmetic and geometric means. Thus, one should try rounding the estimated answer down.

  5. Slide rule - Wikipedia

    en.wikipedia.org/wiki/Slide_rule

    Inverting this process allows square roots to be found, and similarly for the powers 3, 1/3, 2/3, and 3/2. Care must be taken when the base, x, is found in more than one place on its scale. For instance, there are two nines on the A scale; to find the square root of nine, use the first one; the second one gives the square root of 90.

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

  7. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    Tonelli–Shanks cannot be used for composite moduli: finding square roots modulo composite numbers is a computational problem equivalent to integer factorization. [ 1 ] An equivalent, but slightly more redundant version of this algorithm was developed by Alberto Tonelli [ 2 ] [ 3 ] in 1891.

  8. Kunerth's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kunerth's_algorithm

    Solve a quadratic equation associated with the modular square root of = + +. Most of Kunerth's examples in his original paper solve this equation by having be a integer square and thus setting to zero. Expand the left hand side of the following equation:

  9. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Alternatively, Horner's method and Horner–Ruffini method also refers to a method for approximating the roots of polynomials, described by Horner in 1819. It is a variant of the Newton–Raphson method made more efficient for hand calculation by application of Horner's rule. It was widely used until computers came into general use around 1970.