Search results
Results From The WOW.Com Content Network
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
For an object of mass the energy required to escape the Earth's gravitational field is GMm / r, a function of the object's mass (where r is radius of the Earth, nominally 6,371 kilometres (3,959 mi), G is the gravitational constant, and M is the mass of the Earth, M = 5.9736 × 10 24 kg).
The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm.
The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.
In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules. For example, one would calculate the kinetic energy of an 80 kg mass (about 180 lbs) traveling at 18 metres per second (about 40 mph, or 65 km/h) as
The momentum of the body is 1 kg·m·s −1. The moment of inertia is 1 kg·m 2. The angular momentum is 1 kg·m 2 ·s −1. The kinetic energy is 0.5 joule. The circumference of the orbit is 2 π (~6.283) metres. The period of the motion is 2 π seconds. The frequency is (2 π) −1 hertz.
In special relativity, the rule that Wilczek called "Newton's Zeroth Law" breaks down: the mass of a composite object is not merely the sum of the masses of the individual pieces. [82]: 33 Newton's first law, inertial motion, remains true. A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the ...
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]