Search results
Results From The WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Some SI units of volume to scale and approximate corresponding mass of water. A litre is a cubic decimetre, which is the volume of a cube 10 centimetres × 10 centimetres × 10 centimetres (1 L ≡ 1 dm 3 ≡ 1000 cm 3). Hence 1 L ≡ 0.001 m 3 ≡ 1000 cm 3; and 1 m 3 (i.e. a cubic metre, which is the SI unit for volume) is exactly 1000 L.
Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3). The cubic metre is also a SI derived unit. [16] Therefore, volume has a unit dimension of L 3. [17] The metric units of volume uses metric prefixes, strictly in powers of ten. When applying ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The standard liter per minute (SLM or SLPM) is a unit of (molar or) mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). [1]
A unit of volume is a unit of measurement for measuring volume or capacity, the extent of an object or space in three dimensions. Units of capacity may be used to ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
= 10 parts per million by volume = 10 ppmv = 10 volumes/10 6 volumes NO x molar mass = 46 kg/kmol = 46 g/mol Flow rate of flue gas = 20 cubic metres per minute = 20 m 3 /min The flue gas exits the furnace at 0 °C temperature and 101.325 kPa absolute pressure. The molar volume of a gas at 0 °C temperature and 101.325 kPa is 22.414 m 3 /kmol.