When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pareto interpolation - Wikipedia

    en.wikipedia.org/wiki/Pareto_interpolation

    Pareto interpolation is a method of estimating the median and other properties of a population that follows a Pareto distribution.It is used in economics when analysing the distribution of incomes in a population, when one must base estimates on a relatively small random sample taken from the population.

  3. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  4. Median - Wikipedia

    en.wikipedia.org/wiki/Median

    The median of a Cauchy distribution with location parameter x 0 and scale parameter y is x 0, the location parameter. The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is ...

  5. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    Linear interpolation has been used since antiquity for filling the gaps in tables. Suppose that one has a table listing the population of some country in 1970, 1980, 1990 and 2000, and that one wanted to estimate the population in 1994. Linear interpolation is an easy way to do this.

  6. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    If you do not choose the median as the new data point, then continue the Method 1 or 2 where you have started. If there are (4 n +1) data points, then the lower quartile is 25% of the n th data value plus 75% of the ( n +1)th data value; the upper quartile is 75% of the (3 n +1)th data point plus 25% of the (3 n +2)th data point.

  7. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the upper quartile).

  8. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    The median is also very robust in the presence of outliers, while the mean is rather sensitive. In continuous unimodal distributions the median often lies between the mean and the mode, about one third of the way going from mean to mode. In a formula, median ≈ (2 × mean + mode)/3.

  9. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures , the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal.