Search results
Results From The WOW.Com Content Network
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in finding the confidence interval for estimating the population standard deviation of a normal distribution from a sample standard ...
The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution plus one. For example, for a 3-parameter Weibull distribution, c = 4.
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
LibreOffice Calc is the spreadsheet component of the LibreOffice software package. [5] [6]After forking from OpenOffice.org in 2010, LibreOffice Calc underwent a massive re-work of external reference handling to fix many defects in formula calculations involving external references, and to boost data caching performance, especially when referencing large data ranges.
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
There is nothing magical about a sample size of 1 000, it's just a nice round number that is well within the range where an exact test, chi-square test, and G–test will give almost identical p values. Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [2]
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.