Search results
Results From The WOW.Com Content Network
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
Thermal conductivity: λ: Measure for the ease with which a material conducts heat W/(m⋅K) L M T −3 Θ −1: intensive Thermal resistance R: Measure for the ease with which an object resists conduction of heat K/W L −2 M −1 T 3 Θ: extensive Thermal resistivity R λ: Measure for the ease with which a material resists conduction of heat ...
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...
Interfacial thermal resistance is a measure of an interface's resistance to thermal flow. This thermal resistance differs from contact resistance, as it exists even at atomically perfect interfaces. Understanding the thermal resistance at the interface between two materials is of primary significance in the study of its thermal properties.
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
A temperature drop is observed at the interface between the two surfaces in contact. This phenomenon is said to be a result of a thermal contact resistance existing between the contacting surfaces. Thermal contact resistance is defined as the ratio between this temperature drop and the average heat flow across the interface. [1]