Search results
Results From The WOW.Com Content Network
In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.
Student's t-test assumes that the sample means being compared for two populations are normally distributed, and that the populations have equal variances. Welch's t-test is designed for unequal population variances, but the assumption of normality is maintained. [1] Welch's t-test is an approximate solution to the Behrens–Fisher problem.
Since the null hypothesis for Tukey's test states that all means being compared are from the same population (i.e. μ 1 = μ 2 = μ 3 = ... = μ k), the means should be normally distributed (according to the central limit theorem) with the same model standard deviation σ, estimated by the merged standard error, , for all the samples; its ...
The sole exception to this rule is that no difference between two means can be declared significant if the two means concerned are both contained in a subset of the means which has a non-significant range. An algorithm for performing the test is as follows: 1.Rank the sample means, largest to smallest. 2.
Fieller showed that if a and b are (possibly correlated) means of two samples with expectations and , and variances and and covariance , and if ,, are all known, then a (1 − α) confidence interval (m L, m U) for / is given by
In mathematics, the solution set of a system of equations or inequality is the set of all its solutions, that is the values that satisfy all equations and inequalities. [1] Also, the solution set or the truth set of a statement or a predicate is the set of all values that satisfy it. If there is no solution, the solution set is the empty set. [2]
A more complex contrast can test differences among several means (ex. with four means, assigning coefficients of –3, –1, +1, and +3), or test the difference between a single mean and the combined mean of several groups (e.g., if you have four means assign coefficients of –3, +1, +1, and +1) or test the difference between the combined mean ...
Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference. [2] [3] Only discuss differences that have h greater than some threshold value, such as 0.2. [4]