Search results
Results From The WOW.Com Content Network
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
The solutions of the quadratic equation + + = may be deduced from the graph of the quadratic function = + +, which is a parabola. If the parabola intersects the x -axis in two points, there are two real roots , which are the x -coordinates of these two points (also called x -intercept).
A parabola, a convex curve that is the graph of the convex function () = In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes.
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
With the Cartesian equation it is easier to check whether a point lies on the circle or not. With the parametric version it is easier to obtain points on a plot. In some contexts, parametric equations involving only rational functions (that is fractions of two polynomials) are preferred, if they exist.
For linear and quadratic functions, the graph of any function can be obtained from the graph of the parent function by simple translations and stretches parallel to the axes. For example, the graph of y = x 2 − 4x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis. This is because ...
Graph of Johnson's parabola (plotted in red) against Euler's formula, with the transition point indicated. The area above the curve indicates failure. The Johnson parabola creates a new region of failure. In structural engineering, Johnson's parabolic formula is an empirically based equation for calculating the critical buckling stress of a column.