Search results
Results From The WOW.Com Content Network
Liquid hydrogen also has a much higher specific energy than gasoline, natural gas, or diesel. [12] The density of liquid hydrogen is only 70.85 kg/m 3 (at 20 K), a relative density of just 0.07. Although the specific energy is more than twice that of other fuels, this gives it a remarkably low volumetric energy density, many fold lower.
Liquid hydrogen is a common rocket propellant, and it can also be used as the fuel for an internal combustion engine or fuel cell. [citation needed] Solid hydrogen can be made at standard pressure, by decreasing the temperature below hydrogen's melting point of 14.01 K (−259.14 °C; −434.45 °F).
Liquid nitrogen. Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders.
Liquid hydrogen tanks for cars, producing for example the BMW Hydrogen 7. Japan has a liquid hydrogen (LH2) storage site in Kobe port. [4] Hydrogen is liquefied by reducing its temperature to −253 °C, similar to liquefied natural gas (LNG) which is stored at −162 °C. A potential efficiency loss of only 12.79% can be achieved, or 4.26 kW ...
1 H hydrogen (H 2) use (H 2) 0.904 CRC (H 2) 0.90 LNG: 0.904 2 He ... Values refer to the enthalpy change in the conversion of liquid to gas at the boiling point ...
Solid hydrogen is the solid state of the element hydrogen. At standard pressure , this is achieved by decreasing the temperature below hydrogen's melting point of 14.01 K (−259.14 °C; −434.45 °F).
The Hindenburg disaster is an example of a large hydrogen explosion. Hydrogen safety covers the safe production, handling and use of hydrogen, particularly hydrogen gas fuel and liquid hydrogen. Hydrogen possesses the NFPA 704's highest rating of four on the flammability scale because it is flammable when mixed even in small amounts with ...
Slush hydrogen is a combination of liquid hydrogen and solid hydrogen at the triple point with a lower temperature and a higher density than liquid hydrogen. It is commonly formed by repeating a freeze-thaw process. [1] This is most easily done by bringing liquid hydrogen near its boiling point and then reducing pressure using a vacuum pump.