When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  3. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate.

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    A generalization of a rotation applies in special relativity, where it can be considered to operate on a four-dimensional space, spacetime, spanned by three space dimensions and one of time. In special relativity, this space is called Minkowski space, and the four-dimensional rotations, called Lorentz transformations, have a physical ...

  5. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The number of Euler angles needed to represent the group SO(n) is n(n − 1)/2, equal to the number of planes containing two distinct coordinate axes in n-dimensional Euclidean space. In SO(4) a rotation matrix is defined by two unit quaternions, and therefore has six degrees of freedom, three from each quaternion.

  6. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  7. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  8. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  9. Plane of rotation - Wikipedia

    en.wikipedia.org/wiki/Plane_of_rotation

    In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.. The main use for planes of rotation is in describing more complex rotations in four-dimensional space and higher dimensions, where they can be used to break down the rotations into simpler parts.