When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The order of the power series f is defined to be the least value such that there is a α ≠ 0 with = | | = + + +, or if f ≡ 0. In particular, for a power series f(x) in a single variable x, the order of f is the smallest power of x with a nonzero coefficient.

  5. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    then (S n f)(x 0) converges to ℓ. This implies that for any function f of any Hölder class α > 0, the Fourier series converges everywhere to f(x). It is also known that for any periodic function of bounded variation, the Fourier series converges. In general, the most common criteria for pointwise convergence of a periodic function f are as ...

  6. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.

  8. Function series - Wikipedia

    en.wikipedia.org/wiki/Function_series

    In calculus, a function series is a series where each of its terms is a function, not just a real or complex number. Examples

  9. Fourier–Bessel series - Wikipedia

    en.wikipedia.org/wiki/Fourier–Bessel_series

    The Fourier–Bessel series of a function f(x) with a domain of [0, b] satisfying f(b) = 0. Bessel function for (i) = and (ii) =.: [,] is the representation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind J α, where the argument to each version n is differently scaled, according to [1] [2] ():= (,) where u α,n is a root ...