Search results
Results From The WOW.Com Content Network
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The order of the power series f is defined to be the least value such that there is a α ≠ 0 with = | | = + + +, or if f ≡ 0. In particular, for a power series f(x) in a single variable x, the order of f is the smallest power of x with a nonzero coefficient.
then (S n f)(x 0) converges to ℓ. This implies that for any function f of any Hölder class α > 0, the Fourier series converges everywhere to f(x). It is also known that for any periodic function of bounded variation, the Fourier series converges. In general, the most common criteria for pointwise convergence of a periodic function f are as ...
Faà di Bruno's formula gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the nth derivative of a composite function. Lagrange reversion theorem for another theorem sometimes called the inversion theorem; Formal power series#The Lagrange inversion ...
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
In calculus, a function series is a series where each of its terms is a function, not just a real or complex number. Examples
The Fourier–Bessel series of a function f(x) with a domain of [0, b] satisfying f(b) = 0. Bessel function for (i) = and (ii) =.: [,] is the representation of that function as a linear combination of many orthogonal versions of the same Bessel function of the first kind J α, where the argument to each version n is differently scaled, according to [1] [2] ():= (,) where u α,n is a root ...