Search results
Results From The WOW.Com Content Network
The coordinate surfaces of the Cartesian coordinates (x, y, z). The z-axis is vertical and the x-axis is highlighted in green. Thus, the red plane shows the points with x = 1, the blue plane shows the points with z = 1, and the yellow plane shows the points with y = −1.
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
abscissa-axis (horizontal) coordinate ordinate-axis (vertical) coordinate. Together they form an ordered pair which defines the location of a point in two-dimensional rectangular space. More technically, the abscissa of a point is the signed measure of its projection on the primary axis.
In two dimensions, the equation for non-vertical lines is often given in the slope–intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
A horizontal line is a straight, flat line that goes from left to right. Given a function f : R → R {\displaystyle f\colon \mathbb {R} \to \mathbb {R} } (i.e. from the real numbers to the real numbers), we can decide if it is injective by looking at horizontal lines that intersect the function's graph .
The vertical shear displaces points to the right of the y-axis up or down, depending on the sign of m. It leaves vertical lines invariant, but tilts all other lines about the point where they meet the y-axis. Horizontal lines, in particular, get tilted by the shear angle to become lines with slope m.