When.com Web Search

  1. Ads

    related to: worksheet on rules of integers

Search results

  1. Results From The WOW.Com Content Network
  2. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    The integers arranged on a number line. An integer is the number zero , a positive natural number (1, 2, 3, . . .), or the negation of a positive natural number (−1, −2, −3, . . .). [1] The negations or additive inverses of the positive natural numbers are referred to as negative integers. [2]

  3. Floor and ceiling functions - Wikipedia

    en.wikipedia.org/wiki/Floor_and_ceiling_functions

    Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation

  4. Subtraction - Wikipedia

    en.wikipedia.org/wiki/Subtraction

    Subtraction also obeys predictable rules concerning related operations, such as addition and multiplication. All of these rules can be proven, starting with the subtraction of integers and generalizing up through the real numbers and beyond. General binary operations that follow these patterns are studied in abstract algebra.

  5. Exercise (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Exercise_(mathematics)

    Early exercises deal with addition, subtraction, multiplication, and division of integers. Extensive courses of exercises in school extend such arithmetic to rational numbers. Various approaches to geometry have based exercises on relations of angles, segments, and triangles.

  6. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer. The GCD of a and b is generally denoted gcd(a, b). [8]

  7. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    A divisibility rule is a shorthand and useful way of determining whether a given integer is divisible by a fixed divisor without performing the division, usually by examining its digits. Although there are divisibility tests for numbers in any radix , or base, and they are all different, this article presents rules and examples only for decimal ...