Search results
Results From The WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The blue area above the x-axis may be specified as positive area, while the yellow area below the x-axis is the negative area. The integral of a real function can be imagined as the signed area between the x {\displaystyle x} -axis and the curve y = f ( x ) {\displaystyle y=f(x)} over an interval [ a , b ].
The lengths of the sides of a polygon do not in general determine its area. [9] However, if the polygon is simple and cyclic then the sides do determine the area. [10] Of all n-gons with given side lengths, the one with the largest area is cyclic. Of all n-gons with a given perimeter, the one with the largest area is regular (and therefore ...
This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1,y 1), (x 2,y 2), and (x 3,y 3). The shoelace formula can also be used to find the areas of other polygons when their vertices are known.
Area A of a regular convex polygon with n sides and side length s: = Inradius r of a regular convex polygon with n sides and side length s: = Circumradius R of a regular convex polygon with n sides and side length s:
Because each special triangle has area , a polygon of area will be subdivided into special triangles. [ 5 ] The subdivision of the polygon into triangles forms a planar graph , and Euler's formula V − E + F = 2 {\displaystyle V-E+F=2} gives an equation that applies to the number of vertices, edges, and faces of any planar graph.
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex. The extended base of a triangle (a particular case of an extended side) is the line that contains the base.