Search results
Results From The WOW.Com Content Network
Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. [1] The two most common secondary structural elements are alpha helices and beta sheets , though beta turns and omega loops occur as well.
Secondary structure refers to highly regular local sub-structures on the actual polypeptide backbone chain. Two main types of secondary structure, the α-helix and the β-strand or β-sheets, were suggested in 1951 by Linus Pauling. [5] These secondary structures are defined by patterns of hydrogen bonds between the
Secondary structure [4] [5] α-Helices Cylindrical spiral ribbons, with ribbon plane approximately following plane of peptides. β-Strands Arrows with thickness, about one-quarter as thick as they are wide, showing direction and twist of the strand from amino to carboxy end. β-sheets are seen as unified because neighboring strands twist in unison.
An alpha helix (or α-helix) is a sequence of amino acids in a protein that are twisted into a coil (a helix). The alpha helix is the most common structural arrangement in the secondary structure of proteins. It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino ...
The protein structure can be considered as a sequence of secondary structure elements, such as α helices and β sheets. In these secondary structures, regular patterns of H-bonds are formed between the main chain NH and CO groups of spatially neighboring amino acids, and the amino acids have similar Φ and ψ angles. [1]
A hairpin is a special case of a turn, in which the direction of the protein backbone reverses and the flanking secondary structure elements interact. For example, a beta hairpin connects two hydrogen-bonded , antiparallel β-strands (a rather confusing name, since a β-hairpin may contain many types of turns – α, β, γ, etc.).
Since the peptide bonds themselves are polar they are neutralised by hydrogen bonding with each other when in the hydrophobic environment. This gives rise to regions of the polypeptide that form regular 3D structural patterns called secondary structure. There are two main types of secondary structure: α-helices and β-sheets. [citation needed]
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino -terminal (N) end to the carboxyl -terminal (C) end.