When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In linear algebra, linear transformations can be represented by matrices.If is a linear transformation mapping to and is a column vector with entries, then there exists an matrix , called the transformation matrix of , [1] such that: = Note that has rows and columns, whereas the transformation is from to .

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles.

  5. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    A specific application of linear maps is for geometric transformations, such as those performed in computer graphics, where the translation, rotation and scaling of 2D or 3D objects is performed by the use of a transformation matrix. Linear mappings also are used as a mechanism for describing change: for example in calculus correspond to ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    By inserting those vectors and angles into the formula for q above, one finds that if q represents the first rotation, −q represents the second rotation. This is a geometric proof that conjugation by q and by −q must produce the same rotational transformation matrix.

  7. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    is the rotation matrix through an angle θ counterclockwise about the axis k, and I the 3 × 3 identity matrix. [4] This matrix R is an element of the rotation group SO(3) of ℝ 3 , and K is an element of the Lie algebra s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} generating that Lie group (note that K is skew-symmetric, which characterizes ...

  8. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    The determinant of the transformation matrix is +1 and its trace is (+ ... is the Lorentz factor. This formula represents a passive transformation, as it describes ...

  9. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In applied mathematics, a DFT matrix is an expression of a discrete Fourier transform (DFT) as a transformation matrix, which can be applied to a signal through matrix multiplication. Definition [ edit ]