Search results
Results From The WOW.Com Content Network
In contrast to regular venules, high endothelial venules are a special type of venule where the endothelium is made up of simple cuboidal cells. Lymphocytes exit the blood stream and enter the lymph nodes via these specialized venules when an infection is detected. Compared with arterioles, the venules are larger with much weaker muscular coat.
Post-capillary venules have a diameter of between 10 and 30 micrometres (μm), and are part of the microcirculation. Their endothelium is made up of flattened oval or polygon shaped cells surrounded by a basal lamina. Post-capillary venules are too small to have a smooth muscle layer and are instead supported by pericytes that wrap around them ...
High endothelial venules (HEV) are specialized post-capillary venules characterized by plump endothelial cells as opposed to the usual flatter endothelial cells found in regular venules. [1] HEVs enable lymphocytes circulating in the blood to directly enter a lymph node (by crossing through the HEV).
Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes.The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues.
In general, arteries and arterioles transport oxygenated blood from the lungs to the body and its organs, and veins and venules transport deoxygenated blood from the body to the lungs. Blood vessels also circulate blood throughout the circulatory system. Oxygen (bound to hemoglobin in red blood cells) is the most critical nutrient carried by ...
Terminations of the vasa recta form the straight venules, branches from the plexuses at the apices of the medullary pyramids. They run outward in a straight course between the tubes of the medullary substance and join the interlobular veins to form venous arcades. These in turn unite and form veins which pass along the sides of the renal pyramids.
It is very thin in veins and venules. [1] In elastic arteries such as the aorta, which have very regular elastic laminae between layers of smooth muscle cells in their tunica media, the internal elastic lamina is approximately the same thickness as the other elastic laminae that are normally present. [2]
The capillaries connect to venules, and the blood then travels back through the network of veins to the venae cavae into the right heart. The micro-circulation — the arterioles, capillaries, and venules —constitutes most of the area of the vascular system and is the site of the transfer of O 2, glucose, and enzyme substrates into the