Search results
Results From The WOW.Com Content Network
Value of G Unit 6.674 30 (15) × 10 −11 ... establishing the average density of Earth is equivalent to measuring the gravitational constant, given Earth's mean ...
So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m 1, and the Earth's radius (in metres), r, to obtain the value of g: [20]
1.438 776 877... × 10 −2 m⋅K: 0 [12] [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13] ′ [f] Wien frequency displacement law constant: 5.878 925 757... × 10 10 Hz⋅K −1: 0 [14] Wien entropy displacement law constant 3.002 916 077... × 10 −3 m⋅K: 0
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}
After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm −3, gives G = 6.74 × 10 −11 m 3 kg –1 s −2, [24] which differs by only 1% from the 2014 CODATA value of 6.67408 × 10 −11 m 3 kg −1 s −2. [25] Today, physicists often use units where the gravitational constant takes a different form.
The Stoney unit system uses the following defining constants: c, G, k e, e, where c is the speed of light, G is the gravitational constant, k e is the Coulomb constant, and e is the elementary charge. George Johnstone Stoney's unit system preceded that of Planck by 30 years.
The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × 10 −6 rad/s. [11]
The IAU abandoned the defined value of k in 2012 in favour of a defined value of the astronomical unit of 1.495 978 707 00 × 10 11 m exactly, while the strength of the gravitational force is now to be expressed in the separate standard gravitational parameter G M ☉, measured in SI units of m 3 ⋅s −2.