When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Value of G Unit 6.674 30 (15) × 10 −11 ... establishing the average density of Earth is equivalent to measuring the gravitational constant, given Earth's mean ...

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m 1, and the Earth's radius (in metres), r, to obtain the value of g: [20]

  4. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    1.438 776 877... × 10 −2 m⋅K: 0 [12] ‍ [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13] ′ ‍ [f] Wien frequency displacement law constant: 5.878 925 757... × 10 10 Hz⋅K −1: 0 [14] Wien entropy displacement law constant 3.002 916 077... × 10 −3 m⋅K: 0

  5. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  6. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm −3, gives G = 6.74 × 10 −11 m 3 kg –1 s −2, [24] which differs by only 1% from the 2014 CODATA value of 6.67408 × 10 −11 m 3 kg −1 s −2. [25] Today, physicists often use units where the gravitational constant takes a different form.

  7. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    The Stoney unit system uses the following defining constants: c, G, k e, e, where c is the speed of light, G is the gravitational constant, k e is the Coulomb constant, and e is the elementary charge. George Johnstone Stoney's unit system preceded that of Planck by 30 years.

  8. World Geodetic System - Wikipedia

    en.wikipedia.org/wiki/World_Geodetic_System

    The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × 10 −6 rad/s. [11]

  9. Gaussian gravitational constant - Wikipedia

    en.wikipedia.org/.../Gaussian_gravitational_constant

    The IAU abandoned the defined value of k in 2012 in favour of a defined value of the astronomical unit of 1.495 978 707 00 × 10 11 m exactly, while the strength of the gravitational force is now to be expressed in the separate standard gravitational parameter G M ☉, measured in SI units of m 3 ⋅s −2.