Search results
Results From The WOW.Com Content Network
The decibel originates from methods used to quantify signal loss in telegraph and telephone circuits. Until the mid-1920s, the unit for loss was miles of standard cable (MSC). 1 MSC corresponded to the loss of power over one mile (approximately 1.6 km) of standard telephone cable at a frequency of 5000 radians per second (795.8 Hz), and matched closely the smallest attenuation detectable to a ...
While 1 atm (194 dB peak or 191 dB SPL) [11] [12] is the largest pressure variation an undistorted sound wave can have in Earth's atmosphere (i. e., if the thermodynamic properties of the air are disregarded; in reality, the sound waves become progressively non-linear starting over 150 dB), larger sound waves can be present in other atmospheres ...
The lowest curve which is not touched by the measured spectrum at any position in the audio frequency range is NC-45. The room represented by the black curve has an NC45 rating. A list of Noise Criterion Curves for different types of rooms that should not be exceeded
A graph of the A-, B-, C- and D-weightings across the frequency range 10 Hz – 20 kHz Video illustrating A-weighting by analyzing a sine sweep (contains audio). A-weighting is a form of frequency weighting and the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. [1]
Sound exposure level (SEL) is a logarithmic measure of the sound exposure of a sound relative to a reference value. Sound exposure level, denoted L E and measured in dB, is defined by [1]
According to Stevens' definition, a loudness of 1 sone is equivalent to 40 phons (a 1 kHz tone at 40 dB SPL). [1] The phons scale aligns with dB, not with loudness, so the sone and phon scales are not proportional. Rather, the loudness in sones is, at least very nearly, a power law function of the signal intensity, with an exponent of 0.3.
However, decibels are a logarithimic scale, so that successive 10 dB increments represent greater increases in loudness. For humans, normal hearing is between −10 dB(HL) and 15 dB(HL), [ 2 ] [ 3 ] although 0 dB from 250 Hz to 8 kHz is deemed to be 'average' normal hearing.
1 dB = 1 / 20 ln(10) is the decibel. The commonly used reference sound intensity in air is [ 5 ] I 0 = 1 p W / m 2 . {\displaystyle I_{0}=1~\mathrm {pW/m^{2}} .} being approximately the lowest sound intensity hearable by an undamaged human ear under room conditions.