Ad
related to: undefined terms definition geometry meaning in math
Search results
Results From The WOW.Com Content Network
In mathematics, the term undefined refers to a value, function, or other expression that cannot be assigned a meaning within a specific formal system. [ 1 ] Attempting to assign or use an undefined value within a particular formal system, may produce contradictory or meaningless results within that system.
The necessity for primitive notions is illustrated in several axiomatic foundations in mathematics: Set theory: The concept of the set is an example of a primitive notion. As Mary Tiles writes: [6] [The] 'definition' of 'set' is less a definition than an attempt at explication of something which is being given the status of a primitive ...
A good example is the relative consistency of absolute geometry with respect to the theory of the real number system. Lines and points are undefined terms (also called primitive notions) in absolute geometry, but assigned meanings in the theory of real numbers in a way that is consistent with both axiom systems. [citation needed]
The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry ...
They understand the role of undefined terms, definitions, axioms and theorems in Euclidean geometry. However, students at this level believe that axioms and definitions are fixed, rather than arbitrary, so they cannot yet conceive of non-Euclidean geometry. Geometric ideas are still understood as objects in the Euclidean plane. Level 4.
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
When a geometry is described by a set of axioms, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry.
In other words, the elements of geometry form a system which is not susceptible of extension, if we regard the five groups of axioms as valid. The old axiom V.2 is now Theorem 32. The last two modifications are due to P. Bernays. Other changes of note are: The term straight line used by Townsend has been replaced by line throughout.